6.3

 Proving

 Proving
 Quadrilaterals are Parallelograms

Opposite Sides Theorem

If a quadrilateral is a parallelogram, then the opposite sides are congruent.

Opposite Angles Theorem \sum_{n-m} If a quadrilateral is a parallelogram, then the opposite angles are congruent.

Consecutive Angles Theorem If a quadrilateral is a parallelogram, then the consecutive angles are supplementary.

Parallelogram Diagonals Theorem If a quadrilateral is a parallelogram, then the diagonals bisect each other.

What do you need to prove a quadrilateral is a parallelogram?

Given: $\overline{A B} \| \overline{C D}, \overline{A B} \cong \overline{C D}$
Prove: Prove $A B C D$ is a parallelogram
Statement
Reasons

Same Side Parallel \& Congruent Theorem If a quadrilateral has a pair of opposite sides both \& , then it is a parallelogram.

Given: $\overline{A B} \cong \overline{C D}$ and $\overline{A D} \cong \overline{C B}$
Prove: Prove $A B C D$ is a parallelogram
Statement Reasons

Converse of the Opposite Sides Theorem M/ If a quadrilateral has sides , then it is a parallelogram.

Given: $\angle A \& \angle D$ and $\angle A \& \angle B$ are supplementary

Prove: Prove $A B C D$ is a parallelogram

Statement

1) $\angle A \& \angle D$ and $\angle A \& \angle B$ are supplementary
2) $\overline{A B}\|\overline{C D}, \overline{A D}\| \overline{B C}$
3) Prove $A B C D$ is a parallelogram

Converse of the Consecutive Angles Theorem If a quadrilateral has_consecutive

 angles, then it is a parallelogram.Given: $\angle A \cong \angle C$ and $\angle B \cong \angle D$
Prove: Prove $A B C D$ is a parallelogram

Statement	Reasons
1) $\angle A \cong \angle C$ and $\angle B \cong \angle D$	
2) $x+y+x+y=360$	
3) $2(x+y)=360$	
4) $2(x+y)=360$	
5) $x+y=180$	
6) $\angle A \& \angle D$ and $\angle A \& \angle B$ are supplementary	
7)	
8$)$	

Converse of the Opposite Angles Theorem If a quadrilateral has opposite
, then it is a parallelogram.

Given: $\overline{A X} \cong \overline{C X}$ and $\overline{B X} \cong \overline{D X}$
Prove: Prove $A B C D$ is a parallelogram \qquad
Converse of the Parallelogram Diagonals Theorem If a quadrilateral's each other, then it is a parallelogram.

